Search results for "Rad51 Recombinase"

showing 5 items of 5 documents

Chromatin modifiers and recombination factors promote a telomere fold-back structure, that is lost during replicative senescence.

2020

Telomeres have the ability to adopt a lariat conformation and hence, engage in long and short distance intra-chromosome interactions. Budding yeast telomeres were proposed to fold back into subtelomeric regions, but a robust assay to quantitatively characterize this structure has been lacking. Therefore, it is not well understood how the interactions between telomeres and non-telomeric regions are established and regulated. We employ a telomere chromosome conformation capture (Telo-3C) approach to directly analyze telomere folding and its maintenance in S. cerevisiae. We identify the histone modifiers Sir2, Sin3 and Set2 as critical regulators for telomere folding, which suggests that a dis…

TelomeraseProtein Folding:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::DNA-Binding Proteins::Rad52 DNA Repair and Recombination Protein [Medical Subject Headings]:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Fungal Proteins::Saccharomyces cerevisiae Proteins [Medical Subject Headings]Gene ExpressionYeast and Fungal ModelsArtificial Gene Amplification and ExtensionQH426-470BiochemistryPolymerase Chain ReactionChromosome conformation captureHistonesCromatina0302 clinical medicineSirtuin 2Macromolecular Structure AnalysisSilent Information Regulator Proteins Saccharomyces cerevisiaeCellular Senescence:Organisms::Eukaryota::Fungi::Yeasts::Saccharomyces::Saccharomyces cerevisiae [Medical Subject Headings]0303 health sciencesChromosome BiologyEukaryota:Phenomena and Processes::Genetic Phenomena::Genetic Processes::DNA Replication [Medical Subject Headings]TelomereSubtelomere:Anatomy::Cells::Cellular Structures::Intracellular Space::Cell Nucleus::Cell Nucleus Structures::Intranuclear Space::Chromosomes::Chromosome Structures::Telomere [Medical Subject Headings]Chromatin3. Good healthChromatinCell biologyNucleic acidsTelomeres:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Cycle::Cell Division::Telomere Homeostasis [Medical Subject Headings]Experimental Organism SystemsDaño del ADNEpigeneticsResearch ArticleSenescenceDNA Replication:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Hydrolases::Amidohydrolases::Histone Deacetylases [Medical Subject Headings]Chromosome Structure and FunctionProtein StructureSaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeBiologyResearch and Analysis MethodsHistone DeacetylasesChromosomes03 medical and health sciencesSaccharomycesModel Organisms:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Transferases::One-Carbon Group Transferases::Methyltransferases [Medical Subject Headings]:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Intracellular Signaling Peptides and Proteins::Sirtuins::Sirtuin 2 [Medical Subject Headings]:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Fungal Proteins::Saccharomyces cerevisiae Proteins::Silent Information Regulator Proteins Saccharomyces cerevisiae [Medical Subject Headings]DNA-binding proteinsGenetics:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Recombinases::Rec A Recombinases::Rad51 Recombinase [Medical Subject Headings]Molecular Biology TechniquesMolecular Biology030304 developmental biologyCromosomasSenescencia celularOrganismsFungiBiology and Life SciencesProteinsTelomere HomeostasisCell BiologyDNAMethyltransferasesG2-M DNA damage checkpointProteína recombinante y reparadora de ADN Rad52YeastTelomereRad52 DNA Repair and Recombination ProteinRepressor ProteinsAnimal Studies:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Transcription Factors::Repressor Proteins [Medical Subject Headings]DNA damageRad51 RecombinaseHomologous recombination030217 neurology & neurosurgeryTelómeroDNA DamagePLoS Genetics
researchProduct

Rad51 and BRCA2 - New Molecular Targets for Sensitizing Glioma Cells to Alkylating Anticancer Drugs

2011

First line chemotherapeutics for brain tumors (malignant gliomas) are alkylating agents such as temozolomide and nimustine. Despite growing knowledge of how these agents work, patients suffering from this malignancy still face a dismal prognosis. Alkylating agents target DNA, forming the killing lesion O(6)-alkylguanine, which is converted into DNA double-strand breaks (DSBs) that trigger apoptosis. Here we assessed whether inhibiting repair of DSBs by homologous recombination (HR) or non-homologous end joining (NHEJ) is a reasonable strategy for sensitizing glioma cells to alkylating agents. For down-regulation of HR in glioma cells, we used an interference RNA (iRNA) approach targeting Ra…

Cancer Treatmentlcsh:MedicineApoptosisToxicologyBiochemistrychemistry.chemical_compoundDrug DiscoveryRNA Small Interferinglcsh:ScienceHomologous RecombinationNeurological TumorsGene knockdownMultidisciplinaryBrain NeoplasmsGliomaFlow CytometryNon-homologous end joiningOncologyPARP inhibitorMedicinemedicine.drugResearch ArticleBiotechnologyDrugs and DevicesDrug Research and DevelopmentDNA damageMorpholinesToxic AgentsOlaparibGliomaCell Line TumormedicineHumansBiologyAntineoplastic Agents AlkylatingProtein Kinase InhibitorsBRCA2 ProteinTemozolomideBase SequenceNimustinelcsh:RCancers and NeoplasmsChemotherapy and Drug Treatmentmedicine.diseasechemistryMicroscopy FluorescenceChromonesCancer researchlcsh:QRad51 RecombinaseDNA DamagePLoS ONE
researchProduct

Effective targeting of breast cancer stem cells by combined inhibition of Sam68 and Rad51

2022

AbstractBreast cancer (BC) is the second cause of cancer-related deceases in the worldwide female population. Despite the successful treatment advances, 25% of BC develops resistance to current therapeutic regimens, thereby remaining a major hurdle for patient management. Current therapies, targeting the molecular events underpinning the adaptive resistance, still require effort to improve BC treatment. Using BC sphere cells (BCSphCs) as a model, here we showed that BC stem-like cells express high levels of Myc, which requires the presence of the multifunctional DNA/RNA binding protein Sam68 for the DNA-damage repair. Analysis of a cohort of BC patients displayed that Sam68 is an independen…

cancer stem cellCancer Researchtherapy resistanceDNA RepairSettore MED/50 - Scienze Tecniche Mediche ApplicateCell Cycle ProteinsBreast NeoplasmsTriple Negative Breast NeoplasmsMycCell LineBreast cancerSettore MED/04 - PATOLOGIA GENERALECell Line TumorGeneticsHumansMolecular BiologyAdaptor Proteins Signal TransducingTumorSignal TransducingRNA-Binding ProteinsAdaptor ProteinsDNA-Binding ProteinsSam68Neoplastic Stem CellsFemaleRad51 RecombinaseSettore MED/46 - Scienze Tecniche Di Medicina Di Laboratorio
researchProduct

DNA damage causes TP53-dependent coupling of self-renewal and senescence pathways in embryonal carcinoma cells.

2013

Recent studies have highlighted an apparently paradoxical link between self-renewal and senescence triggered by DNA damage in certain cell types. In addition, the finding that TP53 can suppress senescence has caused a re-evaluation of its functional role in regulating these outcomes. To investigate these phenomena and their relationship to pluripotency and senescence, we examined the response of the TP53-competent embryonal carcinoma (EC) cell line PA-1 to etoposide-induced DNA damage. Nuclear POU5F1/OCT4A and P21CIP1 were upregulated in the same cells following etoposide-induced G 2M arrest. However, while accumulating in the karyosol, the amount of OCT4A was reduced in the chromatin fract…

SenescenceCyclin-Dependent Kinase Inhibitor p21OCT4A/POU5F1Embryonal Carcinoma Stem CellssenescenceDNA RepairDNA repairDNA damagetumor cellsBiologyProtein Serine-Threonine Kinasesself-renewalHistonesAurora KinasesCell Line TumorReportAutophagyAurora Kinase BHumansTP53PhosphorylationRNA Small InterferingMolecular BiologyMitosisCellular SenescenceCyclin-Dependent Kinase Inhibitor p16EtoposideOvarian NeoplasmsEmbryonal Carcinoma Stem CellsCell BiologyG2-M DNA damage checkpointbeta-GalactosidasepluripotencyAntineoplastic Agents PhytogenicChromatinUp-RegulationG2 Phase Cell Cycle CheckpointsCheckpoint Kinase 2Cancer researchDNA damageFemaleRNA InterferenceRad51 RecombinaseTumor Suppressor Protein p53Cell agingOctamer Transcription Factor-3Developmental BiologyCell cycle (Georgetown, Tex.)
researchProduct

Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence

2020

AbstractTranscriptional regulation of DNA repair is of outmost importance for the restoration of DNA integrity upon genotoxic stress. Here we report that the potent environmental carcinogen benzo[a]pyrene (B[a]P) activates a cellular DNA damage response resulting in transcriptional repression of mismatch repair (MMR) genes (MSH2, MSH6, EXO1) and of RAD51, the central homologous recombination repair (HR) component, ultimately leading to downregulation of MMR and HR. B[a]P-induced gene repression is caused by abrogated E2F1 signalling. This occurs through proteasomal degradation of E2F1 in G2-arrested cells and downregulation of E2F1 mRNA expression in G1-arrested cells. Repression of E2F1-me…

Cyclin-Dependent Kinase Inhibitor p21SenescenceAcademicSubjects/SCI00010DNA repairDNA damageRAD51E2F4 Transcription FactorBiologyDNA Mismatch Repair03 medical and health sciences0302 clinical medicineCell Line TumorBenzo(a)pyreneGeneticsHumansCellular SenescenceCell Line Transformed030304 developmental biology0303 health sciencesGene regulation Chromatin and EpigeneticsRecombinational DNA RepairEpithelial CellsKv Channel-Interacting ProteinsCell Cycle CheckpointsDNAFibroblastsCell biologyDNA-Binding ProteinsRepressor ProteinsMSH6DNA Repair EnzymesExodeoxyribonucleasesMutS Homolog 2 ProteinGamma RaysMSH2030220 oncology & carcinogenesisCarcinogensMCF-7 CellsDNA mismatch repairRad51 RecombinaseCell agingE2F1 Transcription FactorDNA DamageSignal TransductionNucleic Acids Research
researchProduct